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Detecting generalized synchrony: An improved approach
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We examine some of the difficulties involved in detecting generalized synchrony~GS! in systems that
exhibit noninvertibility and/or wrinkling. These latter features severely hinder identification of GS by conven-
tional techniques. It is shown that it is possible to greatly improve detection by reducing the pseudofalse
neighbors effects. Here we propose thedp-neighbor method to overcome the noninvertibility effect and the
dp,q method to detect GS in systems with wrinkled structures.

DOI: 10.1103/PhysRevE.67.026223 PACS number~s!: 05.45.2a, 87.10.1e, 87.19.La
ys
om
s
iz
be
th

e
s

pe
in
pl

in

ta
ys
-
g

fu
he
s,
e

n
d

, o

til

r-

is
nd
rt-
n
ony
.
d-

ing

tical

ted
hen
ies.
ion
or
ors

the
n,
t

rt-
c-

e
he
for

he

ng

the
I. INTRODUCTION

The synchronization of coupled and driven chaotic s
tems embeds order in the presence of otherwise very c
plex dynamics@1#. Various types of chaotic synchronization
such as identical synchronization, generalized synchron
tion ~GS!, and phase synchronization have been descri
recently. Generalized synchronization is characterized by
existence of a continuous mapf:X→Y between the phas
spacesX andY of a drive and a response system. GS ha
variety of applications in physical and biological systems@2#,
where the detection of GS~and other types of synchrony! is
an important issue. However, the detection processes de
crucially on the underlying specific systems and can be
fluenced by numerous factors. Among these, typical com
cations such asnoninvertibility andwrinkling in models that
exhibit GS have recently attracted much attention@3–6#
from both theoretical and experimental viewpoints. Non
vertibility, which makes the functionf multivalued and the
synchronization set smeared, generally, is a very impor
feature in biological population dynamics and neuronal s
tem with time delays@3,4#. For invertible systems, the syn
chronization set can become nondifferentiable by wrinklin
which makes it difficult or even impossible to obtain use
information of the drive system from observations of t
response system@5,6#. In terms of experimental system
both wrinkled and smeared synchronization sets have b
observed in coupled electronic circuits@3,7#.

Recently, the authors of Ref.@3# studied the effect of
wrinkling and smearing on the detection of nonlinear sy
chrony@3#. They pointed out that most GS detection metho
are based on measuring the continuity off, as follows: For
a coupled drive-response system, after transients die out
may pick a point (X,Y) on the attractor and a ballB@X,d# of
small radiusd about this point. Integrate the full system un
theX component of the trajectory lands in the ballB@X,d# a
large number of times and keep a record of thesed neigh-
bors. Denote by«max the largest distance between their co
respondingY components. When«max→0 linearly as d
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→0, the authors of Ref.@3# argue that the response system
in a continuous functional relationship with the drive, a
the systems exhibit GS. They found that due to noninve
ibility, smearing and wrinkling, this linear relationship ofte
breaks up, making the experimental detection of synchr
~GS in their work! by this method difficult if not impossible

Detection of GS in experimental work usually takes a
vantage of the idea of mutual false nearest neighbors@8#. The
reconstruction of the embedding phase spaceRE from a sca-
lar variabler (t) of the response system and the embedd
phase spaceDE from a scalar variabled(t) taken from the
drive system has been described in Ref.@8#. Careful recon-
struction, with attention to embedding dimension@9#, is nec-
essary to define the suitable nearest neighbors in prac
applications. Furthermore, the effect ofpseudofalseneighbor
points must be taken into account@10#. The pseudofalse
neighbor points are true neighbor points in the reconstruc
attractor, while they are considered to be unsuitable w
local methods are adopted to predict chaotic time ser
However, as we discuss in detail below, the local predict
used in Ref.@3# neither uses appropriate embedding n
takes into consideration the effect of pseudofalse neighb
when trying to detect GS. In this paper, we adapt
d-neighbor method~e.g., appropriate embedding dimensio
removal of pseudofalse neighbors!, and find that in contras
to the analysis of Ref.@3#, a linear«max-d relationship can be
found for GS, even in systems that wrinkle or are noninve
ible. This study implies the feasibility of experimental dete
tion of GS in practice.

II. THE PSEUDOFALSE NEIGHBOR METHOD

In our view, it might be possible to detect GS by th
methods of Ref.@3# if time series embedding is used and t
effect of pseudofalse neighbors is removed. Consider,
instance, the drive system of the first~wrinkled! example in
Ref. @3#—the generalized Baker’s map. The attractor of t
drive has the box-counting dimensionD052. The difficul-
ties of detecting GS, as described in Ref.@3# arise because
they fail to take into account this dimensionality. Embeddi
the data in the spirit of Takens embedding theorem@11#
proves to be useful here. In this respect, we make use of
©2003 The American Physical Society23-1
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‘‘ dp neighbor’’ approach, as described in Ref.@10#, which
attempts to reduce the influence of the pseudofalse neig
points by carefully tracking the trajectory, its nearest neig
bors and their preimages after the data has been embed

The definition of dp is as follows @10#: In the recon-
structed state space, for a particular reference pointXN ,
whereN is the time index, thek ‘‘usual’’ d-neighbor points
of XN are notated asXN( j ) , j 51,2, . . . ,k. These neighbors
satisfy the conditioniXN( j )2XNi,d, wherei•i represents
Euclidean distance. Thedp-neighbor pointstake into account
the p preimages as well. The neighborsXN( j ,p) , j
51,2, . . . ,k are defined as those points satisfyingiXN( j )2 i

2XN2 i i,d for everyj and 0< i<p. The approach thus use
previous segments or pattern found in the drive or respo
data to enhance the prediction.~Note that strictly speaking
this method of preimages is not completely equivalent
Taken’s scheme for phase space reconstruction.! The main
rationale behind this strategy@10# is that thedp-neighbor
points lie near the reference point not only in state space,
also in tangent space. Similar ideas have been used to i
tify the embedding dimension@10–12#, where the directions
of vectors in a neighborhood are examined to exclude
false crossing caused by an improperly reconstructed sp
It is necessary and reasonable to introduce thedp neighbor to
the detection of GS, especially for noninvertible system
Due to the noninvertibility, a typical state of the drive w
have a whole tree of possible histories, and recurrences in
drive may thus occur along different routes. Each such ro
provides a different driving signal. Therefore, for almost
points in the drive there typically corresponds a Cantor se
points in the response: one for each drive history@3#. Thed
neighbor used in Ref.@3# is in fact the special case of thedp

neighbor withp50. Therefore, it is hardly surprising tha
the d0 neighbors includes a large percent of pseudofa
neighbors, and the prediction, of course, is much worse w
wrinkling and noninvertibility is present. A direct way t
improve the prediction is to increase the number of pre
agesp.

With regard to the experimental detection of GS, in m
cases the drive and response signals are measured as
data. Similar to the«max-d scheme, a reference point and
dp neighbors are taken from the scalar signal of the dri
Their correspondences in the response system gives
«max. If there exists a GS between drive and response
tem, one may typically expect that«max→0 linearly as d
→0. This description includes the cases bothp50 and p
.0. It can be found that with the pseudofalse neighbor
proach, i.e.,p.0, one may get a much better detection
GS than the unembedded casep50. This scheme can b
illustrated by examples adopted in Ref.@3#. Consider, for
example, the noninvertible case discussed in Ref.@3# which
is their ‘‘worst-case’’ situation where the ability to predict th
state of the response system from the drive is severely
ited. Unlike their results, we find that after takingp>5, the
«max-d relation is extremely close to linear. In practice, t
use of a segmentp.0 rather than an instantaneous statep
50, enhances prediction of consequent states. This is
cause with noninvertible systems,d0 neighbors often have
02622
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very different historic trajectories~preimages!, and cannot be
used as a guide for local prediction. Thedp neighbors, on the
other hand, all have similar histories and correspond
states in the response system can be used as a guide to
dict consequent states. The choice ofp should reflect the
dimension of the attractor of the drive and response syste
In this paper, we chose 6 –12 for one- and two-dimensio
map systems, which was usually found to be sufficient.

For the case of wrinkling, we suggest using what we te
dp,q neighbors. LetXN andYN denote the original~or recon-
structed! state of the drive and the response systems, res
tively. Thedp,q-neighbor pointsXN( j ,p,q) ( j 51,2, . . . ,k) are
defined as those points satisfyingiXN( j )2 i2XN2 i i,d for
every j and 0< i<p and at the same time the correspondi
stateiYN( j )2 l2YN2 l i,d for every 0, l<q. The necessity
for embedding the response systems~throughq-dimensional
neighboring system! as well as the drive is most likely due t
the complex fractal structure of the synchronization set as
ciated with wrinkled systems.

Just as with thedp-neighbor method, we denote«max as
the maximum value among all neighborsiYN( j )2YNi . For
the above three definitions@d-, dp-, and dp,q-neighbor ap-
proaches#, if «max→0 linearly asd→0, then GS occurs be
tweenXN andYN .

III. RESULTS AND DISCUSSION

Below we illustrate the above approaches by investigat
the following three models. These models are very typi
noninvertible and/or smeared examples which have b
studied in@3–6#. Reconstruction before reducing the pseud
false neighbors is not necessary in these examples, bec
their original dimensions are very low~1 or 2!. In this situ-
ation, the result of the original coordinates is similar wi
that of the reconstructed coordinates.

(a) Two-dimensional piecewisely linear map. This map is
a noninvertibleexample and has been discussed in Ref.@3# to
illustrate how noninvertiblilty hampers the detection of sy
chronization. The model is

x
n11

5H 2xn , xn,0.5

2~xn20.5!, xn>0.5

yn115cyn1xn11 . ~1!

FIG. 1. Simulation result of the two-dimensional piecewise
linear map~1!: ~a! result of Ref.@3#; ~b! our result by using the
dp-neighborhood prediction withp57. The dot-dashed line is the
theoretically expected linear relation.
3-2
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For ucu,1 the synchronization set is asymptotically stab
Here we usec50.35, there is GS betweenx and y. In Fig.
1~a!, the relation between«max and d is numerically deter-
mined by using thed-neighbor approach, and the theore
cally predicted linear line is plotted for purpose of compa
son. It is found that«max decreases withd far too slowly,
indicating the poor detection efficiency of thed-neighbor
approach. However, with thedp-neighbors approach~with
p>5, for example,p57 here!, Fig. 1~b! shows that«max
decreases linearly asd, implying the presence of GS be
tween response and drive system. This indicates that
dp-neighbor method detects GS in this noninvertible syst
while thed-neighbor method fails.

(b) The tent-map-driven logistic map.

xn115H xn /b, xn,b

~xn21!/~b21!, xn>b

yn115~12e!ayn~12yn!1exn11 , ~2!

where the parameterbP(0,1) controls the symmetry of th
tent map,a is the control parameter of the logistic map, a
e is a coupling parameter. Here we useb50.677 anda
53.7. This drive-response map is also studied as a typ
noninvertible case by Afraimovichet al. @4#. In Fig. 2, we fix
p58 and varye from 0.2 to 0.5. For eache three simula-
tions are given beginning from different randomly chos
initial conditions. For the casee50.2, where there is no GS
@4# there is also no linear relation between«max and d, as
might be expected, no matter how largep @see Fig. 2~a!#. The
diagonal linear relation becomes more apparent for largee
as seen in Figs. 2~b!–2~d!. For the casee50.6, which ac-
cording to detailed analysis in Ref.@4# is synchronized, the
d-«max curve is very close to linearity@same ase50.5 in
Fig. 2~d!#. Thus usingdp neighbor with a suitablep, GS can
be detected even when the relation is noninvertible. Ge
ally for largerp, the prediction error is smaller. On the oth

FIG. 2. Simulation results for the tent-map-driven logistic m
~2!. The dp-neighborhood prediction withp58. ~a! e50.2, ~b! e
50.3, ~c! e50.4, and~d! e50.5. The dash-dotted line gives th
theoretical expectancy.
02622
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hand, a highp requires a larger quantity of raw data (N
5106 for Fig. 2!, which would sometimes make the te
procedure difficult for experimental applications.

~c! The generalized Baker’s map. Wrinkling appears to
make GS more difficult to detect than noninvertiblity. For t
latter, it is already clear that if the history of the drive
considered, a smoothlike relation can be found between
sponse and drive signal@4#. To our knowledge, in the pres
ence of wrinkling there is no such relationship. The mec
nism of wrinkling has been exhaustively studied ve
recently@3,5,6#. In our view, the wrinkled attractor has prop
erties that resemble that of a strange nonchaotic attractor,
fractal structure with a negative Lyapunov exponent@13#.
For the wrinkling case, increasingp helps little in detecting
GS when we use the above method. However, thedp,q ap-
proach, which includes both the history of the drive and
response when choosing suitable neighbors, provides a b
diagonal relation betweend and«max. We illustrate thedp,q

approach with the following system@3,5,6#:

un115H lun , vn,a

l1~12l!un , vn>a

vn115H vn /a, vn,a

~vn2a!/~12a!, vn>a

yn115cyn1cos~2pun11!. ~3!

Here lP(0,1), aP(0,1). The Baker’s map is iterated in
two-dimensional unit square. It has been shown that forucu
,1, the response is asymptotically stable for all (u,v). The
synchronization set is typically nondifferentiable if the ave
age contraction within the drive is larger than the contract

FIG. 3. Simulation result of the generalized Baker’s map.~a!
Complicated structures of the synchronization set.~b! Relation us-
ing the method given in Ref.@3#. ~c! Relation using the
dp-neighborhood prediction p512; ~d! relation using the
dp,q-neighborhood predictionp54 andq51. In ~b!–~d! the dotted
line gives the theoretically expected result.
3-3
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in the response, and the development of this nondifferen
bility is called wrinkling @3,5,6#. We chose the parameters
l50.8, a50.7, andc50.8 following Refs.@3,5#.

In Fig. 3~a!, the complicated structure of the synchroniz
tion set is plotted. It can be seen that almost everywhere
the u axis, a randomly chosenu corresponds to a vertica
segment ofy. In Fig. 3~b!, the d-«max relation is plotted, as
found by thed-neighbor method adopted in Ref.@3# ~corre-
sponding to the casep50, q50). The same relation by
applying thedp-«max neighbor prediction with a very larg
p512 (q50) is plotted. Both curves deviate far from th
linear relation, indicating difficulty in detecting GS.~Note
that for the above chosen parameters the system act
achieves GS.! This implies thatp alone cannot give a goo
prediction. In Fig. 3~d! we use thedp,q-neighborhood predic-
tion to detect GS with relatively small parameters (p,q)
5(4,1). The scaling relation coincides well with the the
retically predicted diagonal line. Therefore, it is possible
detect GS with wrinkled structures by choosing a low e
bedding dimension pair; something which should be help
in practical applications.

IV. CONCLUSION

Noninvertible and wrinkling effects may severely hamp
detection of GS by conventional approaches. The detec
efficiency can be greatly improved if the pseudofalse eff
is reduced. In this paper, we propose thedp-neighbor method
to overcome the noninvertibility effect and thedp,q method
s.

E
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to detect GS with wrinkled structures. We also demonstra
the effectiveness of these approaches by exploring diffe
examples. In fact, it was already mentioned in Ref.@4# that
for the noninvertible case, if the history of the drive syste
is considered, the smeared attractor can be restricted
smoothbranches. But the method there~which considers the
history of the drive as followed through a symbolic dynam
scheme! is only suitable for noninvertible systems with
single positive Lyapunov exponent. The presentdp approach
is relatively general and, moreover, for one-dimensio
drive systems, gives similar results to the symbolic sche
We have also shown that the detection of GS for
wrinkled case is somewhat more complicated than
smeared noninvertible case, which is contrary to the con
sions of Ref.@3#. This is because the wrinkled case depen
also on the history of the response. We expect these resu
be helpful in understanding complicated features regard
the detection of nonlinear synchrony.
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